

MINOS Experiment

NuFact'00 Workshop

May 22-26, 2000, Monterrey, California, USA

Hwi Yong Kim

California Institute of Technology

- Introduction
- Neutrino Beam
- MINOS Detector
- Physics Reach

The MINOS Collaboration

Over 250 Physicists and Engineers

IHEP-Beijing ¹Athens ¹ Dubna ¹ ITEP-Moscow ¹ Lebedev ¹ Protvino ¹ Oxford ¹ Rutherford ¹ Sussex ¹ University College London ¹ Argonne ¹ Brookhaven ¹ Caltech ¹ Chicago ¹ Elmhurst ¹ Fermilab ¹ James Madison ¹ Harvard ¹ Indiana ¹ Livermore ¹ Minnesota ¹ Northwestern ¹ Pittsburgh ¹ South Carolina ¹ Stanford ¹ Texas-Austin ¹ Texas A&M ¹ Tufts ¹ Western Washington ¹ Wisconsin

MINOS Experiment

Neutrinos at the Main Injector (NuMI)

- 120 GeV protons
- 1.9 second cycle time
- 4x10¹³ protons/pulse
- Single turn extraction (10µs; possible upgrade to 1 ms resonant extraction)
- 4x10²⁰ protons/year
- 700 m x 2 m diameter decay pipe for neutrino beam.
- 200 m rock absorber.
- Near detector complex.

Producing a Neutrino Beam

120 GeV protons hit target (10²⁰/Protons per year!)

 π^+ ("pions") produced at wide range of angles

Magnetic horns to focus π^+

 π^+ decay to $\mu^+\nu$ in long evacuated pipe

Left-over hadrons shower in hadron absorber

Rock shield ranges out μ⁺

v beam travels through earth to experiment

Magnetic Horns

π^+ Production, Focusing, Decay

- Without focusing, flux to detector is only ~1/25 of flux in pion direction
- With a parabolic shaped horn inner conductor,
 B dL (i.e. p_t kick) is linear with radius -> lens

- •The focal length is proportional to p: choice of target to horn distance selects momentum
- π focused parallel by horn 1 go through hole in horn 2; somewhat under or overfocused π are focused by horn 2

PH2 Horn Configurations and Neutrino Spectra

The Hadronic Hose

SOURCES OF FAR/NEAR SPECTRUM DIFFERENCES

*** *** HADRONIC HOSE CONCEPT *** ***

Continuous focusing reduces Far/Near difference

Wire in decay pipe I= 0.5 to 1 kA

* dont let hadrons hit walls

(* but can't change pion lifetime)

Angular distribution to Far and Near now much more similar

Spectra from Hadronic Hose vs Conventional Focus

PH2LE Figure 4: Relative variation in the far/near comparison when the hadronic Hadronic Hose duction p_t spectrum is varied, for the basline PH2ME design (boxes) and \cong Hadronic Hose (points). Box size and point error bars represent Monte (special Human error). The impact of p_t uncertainty is a factor of three less in Figure 1: Top: Comparison of the ν_{μ} charged-current event baseline PH29E beam in the Far Detector (dots) with the spectrum of the Care and below 8 GeV the Hadronic Hose beamline show Detector (histogram). Bottom: same but with the addition as signification at all. Hose. In each plot, the near detector event rate is scaled by 0.77×10^{-6} , which corresponds to the relative flux that would be expected based on the lifetime of a 10 Get pion traveling down the center of the decay pipe. LE, E<6 GeV CC Events / 1.2 40 ME, E<12 GeV 20 1.1 HE 0 0 5 10 15 20 25 30 。(GeV) 0.5 1.5 2

I, kA

Figure 27: The low energy beam far detector ν_{μ} CC spectrum. The baseline low energy beam is shown by boxes and the baseline with the addition of the

What Neutrino Beam Energy to Choose?

(Sample Osc. Prob. at Soudan spanning Kamiokande and SuperK regions)

Around highest energy oscillation node!

Soudan Underground Laboratory

Headframe of the Soudan Iron Mine (former) State Park and Laboratory

LEVEL NO. 27

2341 FEET BELOW THE SURFACE
689 FEET BELOW SEA LEVEL

Far Detector Cavern Layout

MINOS Far Detector

Far Detector Module Layout

- 8 modules cover one far detector steel plane
- Four 20-wide modules in middle (perp. ends)
- Four 28-wide modules on edges (45 deg ends)
- Two center modules have coil-hole cutout

Near Detector Side View

Near Module Layout

Some changes under study.

Scintillator Strip WLS Fiber Readout

1.0 cm x 4.1 cm extruded polystyrene scintillator

- Scintillator strips are commercially extruded polystyrene
 - PPO and POPOP fluors
 - Wavelength-shifting (WLS) fiber groove
 - Co-extruded TiO₂ reflective cap
- Groups of 20 or 28 strips are assembled into "modules"

Extruded Scintillator

Cross section of co-extruded scintillator strips

Schematic View of the MINOS Scintillator System

- Extruded scintillator, 4cm wide
- Two-ended WLS fiber readout.
- Strips assembled into
 20 or 28-wide modules.
- WLS fibers routed to optical connectors.
- Light routed from modules to PMTs via clear fibers.
- 8 Fibers/PMT pixel in far detector. (Fibers separated by ~1m in a single plane.
- 1 Fiber/PMT pixel in near detector (avoids overlaps).
- Multi-pixel PMTs (Hamamatsu M16)

Module Components and Design

- The far detector module design is complete.
 - « Final drawings exist for all components. Example
 - « Light-tightness concerns addressed.
 - « Final prototype components have been produced for use in "dress rehearsal" production at Argonne.
- Orders for module components are being developed.

Clear Fiber

- We have changed the cable design:
 - « Adopt design used by D0.
 - * Already proven design!
 - * Fire safety issues already satisfied!
 - « Better light seal (problem found in 4PP)
 - « More robust.
 - « Lower cost!

 Cable mockup in Muon Lab is being used to better define cable runs.

Transmittance of Clear Fiber

Clear Fiber Cable Transmittance - 4PPT

PIM7T - 4.3 m

P1M2T - 1.9 m

Connector transmittance not included Measured cable attenuation length = 11.3 m Typical transmittance variance with cable ~ 4.5%

Light Throughput of Fiber Connectors

- 30-wide optical connectors have been successfully injection molded (important for low cost).
- Ready to proceed with full production.

MUX Boxes

• Far detector MUX box design is complete.

M16 and M64 for MINOS

The University of Texas at Ausi

FAR Detector Hamamatsu's R-5900-M16

NEAR Detector
Hamamatsu's R-5900-M64

Karol Lang The University of Texas MINOS Collaboration Meeting Fermilab, April 13-15, 2000

Summary of M16 Response Measurements

Gain Distributions for 16 Tubes

Relative efficiencies for 16 tubes

M64 Measurements

- M64 response looks very similar to M16 (not a surprise).
- M64 QE may be slightly lower than new M16s.
- M64s are more efficient for non-multiplexed system.

MINOS Physics Goals

- Demonstrate Oscillation Behavior
 - « Precise measurement of CC energy distribution between near and far detector (1-2% systematic uncertainty).
 - « "Standard" or non-standard oscillations?
- Precise Measurement of Oscillation Parameters
- Precise Determination of Flavor Participation
 - « Number of CC ν_{μ} events far/near ~1-2%: Probability for $\nu_{\mu} \nu_{x}$ oscillation.
 - « Number of CC v_e events far/near: probability for $v_{\mu} v_e$ oscillation down to about 2%.
 - « Number of NC events far/near: probability for $v_{\mu} v_{\text{sterile}}$ oscillation down to about 4%.

Muon Neutrino CC Events in MINOS

- A muon with enough energy to penetrate beyond the hadronic shower region is produced in most of these events, producing a "tail".
- The muon will curve as it moves through the magnetic field. Momentum is measured by range and curvature at low energies (typically below about 5-8 GeV) and curvature at high energy.
- In addition to the muon, "nuclear fragments" will be observed.

Neutral Current Events in MINOS

- Just nuclear fragments... no muon.
- EM showers from π^0 s typically have lower energy than.

Electron Neutrino Events in MINOS

Electron Neutrino Events:

- « An electron is produced in most of these events.
- « The electron produces a very intense "shower" of particles which produce a large amount of light in a narrow "cigar-shaped" region.
- « The shower extends a much shorter length than muons.
- « Nuclear fragments can also be produced.

"Sterile" Neutrino Events in MINOS

- "Sterile" Neutrino Events:
 - « "Sterile" neutrinos never stop in the detector! We can only "see" them by predicting how many of the other neutrino types we should have seen.
 - « Its like waiting for a bus that never shows up. The schedule says it should have been there but something must have happened to it!

Measurement of Oscillations in MINOS

Flavor participation (including NC) measured to a few percent.

MINOS Oscillation Mode Sensitivity

(Discriminate
$$v_{\mu} \rightarrow v_{\tau}$$
 vs. $v_{\mu} \rightarrow v_{\text{sterile}}$)

Use CC/NC Ratio to distinguish between oscillations to v_{τ} or v_{sterile}

• For v_{μ} , CC production of τ 's will look like NC ~80% of the time

CC/NC down

For ν_μ→sterile, both CC and NC will be suppressed.

CC/NC stays ~ constant

MINOS Low Δm² Sensitivity

